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ABSTRACT 

  In this paper, convective dominated diffusion process in an axi-

symmetric tube with a local constriction simulating a stenosed artery 

considering the porosity effects is carried out. The investigations demonstrate 

the effects of wall shear stress and recirculating flow on the concentration 

distribution in the vessels lumen and on wall mass transfer keeping the 

porosity in view. The flow is governed by the incompressible Navier-Stokes 

equations for Newtonian fluid in porous effects. The convection diffusion 

equation is used for the mass transport. The effect of porosity is examined on 

the velocity field and wall shear stress. The numerical solutions of the flow 

equations and the coupled mass transport equations are solved using finite 

difference scheme. The study explains the effect of porosity of the flow on the 

mass transport. The works that consider the possibility of reducing these flow 

instabilities using porous effect are reviewed. 

Key words: Blood Vessels, Porosity, Wall Shear Stress, Simulation, Convection 

Diffusion   
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Computational fluid dynamics simulations of complex flows in vascular 

passages such as cerebral or carotid arteries can provide clinicians with 

information needed to evaluate how pathologies from, how they evolve and 

ultimately how they are effectively treated. The geometry of blood vessels and 

arterial wall, their structure and mechanical properties depend on the pressure 

and flow conditions. In general stenosed arteries respond to sustained change 

in pressure of flow with remodeling functional characteristics of the artery. The 

porosity effects on blood flow cannot be ignored while studying a realistic 

problem. Some of the studies on the arterial flows are given as follows. 

Analytical transport phenomena are important to the understanding of vascular 

diseases is established by Fry and Vaishnav (1980). 

 Liepsch and Moravec (1984) investigated the flow of a shear thining 

blood, analog fluid in pulsatile flow through arterial branch model and observed 

large differences in velocity profiles relative to these measured with Newtonian 

fluids having the high shear rate viscosity of the analog fluid. Rodkiewicz et al. 

(1990) used several different non-Newtonian models for simulations of blood 

flow in large arteries and they observed that there is no effect of the yield stress 

of blood on either the velocity profiles or the wall shear stress. Out of these a 

large number of numerical studies concentrate on the transport phenomena in 

the microcirculation. Bassingthwaitghte et al. (1992) studied the exchange of 

gases between the systemic capillaries and the surrounding tissue. Very much 

attention has not been given to the numerical investigation of transport 

phenomena in large arteries keeping porosity in view. 

 The reason for this may be that most of these phenomena are highly 

convection dominated due to the low diffusion coefficients in quite a large 



number of cases. In the arterial system there is evidence that fluid dynamic 

factors, especially shear forces, affect blood phase transport as well as 

properties of the vascular wall like wall permeability to solutes of gases [Tarbell 

(1993)]. Cavalcanti (1995) has discussed the inadequacies of such studies for 

the determination of the model for plaque growth. These observations provide 

future direction for research. Back et al. (1996) founded the important hemo- 

dynamical characteristics like the wall shear stress, pressure drop and 

frictional resistance in catheterized coronary arteries under normal as well as 

the pathological conditions due to stenosis being present. Rapptisch and 

Perktold (1996) investigated computer simulations of convective diffusion 

process in large arteries. For heat transfer in muscle tissues, Weinbaun et al. 

(1997) found that a correction factor of efficiency needs to be multiplied by the 

perfusion source term in the Pennes equation for bio heat transfer in a muscle 

tissue. This coefficient is a function of vascular cross-section geometry and is 

independent of the Peclet number 

 Korenga et al. (1998) consider a biochemical factors such as gene 

expression and albumin transport in atherogenessis and in plaque rupture. 

These have been shown to activate by hemo-dynamic factors in wall shear 

stress. However the concept of suction by tissues present in the vessels has not 

been considered in these studies. Rachev et al. (1998) have considered a model 

for geometric and mechanical adaptation of arteries. Lei et al. (1998) 

investigated a complex model for the transvascular exchange and extravascular 

transport of both fluid and macromolecules in a spherical solid tumor, the 

micro vascular lymphatic and tissue space were each considered as a porous 

medium. Tang et al. (1999) analysed blood flow in carotid arteries with stenosis. 



Berger and Jou (2000) measured wall shear stress down stream of axi-

symmetric stenoses in the presence of hemo-dynamics forces acting on the 

plaque, which may be responsible for plaque rupture. Stroud et al. (2000) 

founded the influence of stenosis morphology on flow fields and on quantities 

such as wall shear stress among stenotic vessels with very mild stenosis. 

Sharma et al. (2001) considered a mathematical analysis of blood flow through 

arteries using finite element Galerkin approaches. Tada and Tarbell (2000) 

utilized the Brinkman model to investigate the two-dimensional interstitial flow 

through the tunica media of an artery wall in the presence of an internal elastic 

lamina. Sharma et al. (2001) profounded MHD flow in stenosed artery using 

finite difference technique. Khaled and Vafai (2003) studied flow and heat 

transport in porous media using mass diffusion and different convective flow 

models such as Darcy and the Brinkman models, Energy transport in tissue is 

also analysed.   

In the present study the steady convective diffusion of oxygen in an axi-

symmetric tube with a local constriction simulating a stenosed blood vessel is 

investigated numerically applying a passive transport law for the flow of and 

mass transfer parameter with effect of porous to take account of wall porosity. 

An important aspect of this analysis is the comparison of two models for the 

solute wall flux one is assuming constant wall permeability and the second 

incorporating shear dependant wall permeability in the presence of porosity. 

This work was motivated by the study of lateral dispersion of cholesterol in 

arteries, where the blood containing cholesterol flows through and past the 

porous medium [Shivkumar (2001)]. Sharma et al. (2004) studied performance 



modeling and analysis of blood flow in elastic arteries. Kumar et al. (2005) 

studied computational technique for flow in blood vessels with porous effects.  

      

 

2. Formulation of the Problem: 

 In the present investigation the flow formulation for Navier-Stokes 

equations for incompressible Newtonian fluids in the porous effect has been 

considered. For an axi-symmetric coordinate (z, r) the equations can be written 

as: 
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where u and v are the axial (z) and radial (r ) velocity components, ρ is the 

constant fluid density, p is the fluid pressure and ν  is kinematic coefficient of 

viscosity.  

The stream function –viscosity form of the Navier-Stokes equation has a major 

advantage over the primitive variable from in two-dimensional incompressible 

flow problem so far as numerical solutions of these equations are concerned. 

Here  
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and vorticity is  
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The equations (3) can be written as, 
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Taking the r-derivative of equation (1) and subtracting the z-derivative of 

equation (2), pressure term has been eliminated. 
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Figure 1. Geometrical construction of an artery segment with stenosis. 

 

The mass transport, which is coupled to the velocity field, is modeled by the 

convection diffusion equation as given below: 
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where c denotes the solute concentration and D the constant diffusion 

coefficient. To make the parameters non –dimensional forms we put: 

0
* / Lzz =                         0

* / Lrr = ,/ 0
* Uuu =

,/ 0
* Uvv =     ,/ 0

* Ccc =
0

0*

L
Utt =    (8) 

The convective diffusion equation can be written in non-dimensional forms as:  
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where  the reference length,  the reference velocity and  the reference 

concentration. Peclet number is defined as: 
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where 
µ

ρ 00 LU
Re =  is Reynolds number and DSc ρµ /=   is Schmidt number. 

For the large Peclet number the hyperbolic part *
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becomes dominant. The elliptic equations are used to generate the boundary 

fitted coordinate system. We are consider the following transformation. 
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These equations constitute a transformation form the physical plane to 

numerical plane. This transformation is governed by the elliptic equation; it is 

called elliptic grid generation [Thompson (1974)]. The relations between the 

physical plane and the transformed plane are: 
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The metric coefficient and the Jacobian of the transformation are: 
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The governing equations can be written as a coupled set of equations in terms 

of the stream function and vorticity as given below: 
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where 
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2.1 Boundary Conditions 

Assuming a steady flow a fully developed parabolic velocity profile at the inlet 

are: 
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at the wall a no slip condition is: 

u = v = 0 

and at axis of symmetry the normal velocity gradient is zero: 
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At the out flow boundary section zero surface traction force is assumed to be 

zero i.e. 
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where n is the outward unit normal vector and u=(u, v). 

Evidently no slip conditions as given below: 
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Following Rapptisch and Perktold (1996) the boundary conditions for the 

transport diffusive equations are constant concentration at the inlet, 

c= ,           (18) 0C

Zero axial concentration gradient 0=
∂
∂
z
c

 at the outlet condition, 

And for symmetry condition, 0=
∂
∂
r
c

, 

For the diffusive flux at the wall, we consider the first model with constant wall 

permeability, 
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 where α  is constant wall permeability and  is the wall concentration. 

And the other model permeability is dependent on the wall shear stress are 

given by, 
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where ( ng τ ) is the shear dependent wall permeability function. 

3. Numerical Method  

The spatially discrete from of the governing equations is obtained using a finite 

difference scheme. 

 The semi-discretized governing equations are written in the following from: 
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for i=2,…m-1,   j=2…,n-1. 

The difference operators are defined as: 
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Similarly  and  1....1.. , −−++ −=−= jijijijijiji fffDfffD ηη ,1.1..0 −+ −= jijiji fffDη

The discrete form of the boundary conditions given above can be obtained using 

the finite difference scheme. 
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while all the other boundary conditions are conventional, there is a 

computational difficulty with the no slip condition, since no vorticity value is 

available at the wall, j=n in order to solve the difference equations (22). For 

computation purpose, the following iterative algorithm is used following Huang 

et al. [1995]. This scheme is used for temporary discretization to ensure a 

second order accurate solution both in time and space for both convective and 

diffusion terms. 

NUMERICAL ALGORITHM: 

Step1. Solve equation (21) for j=2,…, n-1 and i=2,…, m-1. The stream function 

)(ψ at j=n-1 is calculated using both no slip boundary condition (17) at the wall. 

Gauss-Siedal method is used to solve the algebraic equations. 



Step2. Update  and using ξηµ ξηv ψ  from the previous step. 

Step3. To calculateζ  at j =n-1 for i=1,…, m-1 use relation (21), coupling ψ  and 

ζ , is satisfied at j=n-1; 

Step4. Solve equation (22) at j=2,…,n-1 for i=2,…,m-1 using the value at j=n-1 

from step (3) and necessary conditions at the other boundaries. Again using 

Gauss-Siedal method solves the algebraic equations.  

Step5. Steps (1)-(4) are repeated until convergence is reached. The solution of 

convective diffusion equation can be obtained using the finite element 

technique following Rapptisch and Parktold(1996). The present algorithm is 

economic and efficient having a sharp convergence.  

4. Results and Discussion 

The simulation of the steady convective diffusion of dissolved oxygen in stenotic 

artery model has been performed and streamlines as well as continuous 

contour are given in figure 2(A) and 2(B). The simulation parameters for the flow 

and oxygen transport are such that the physiological conditions in the human 

abdominal aorta match with the same. The geometric parameters are taken as: 

inlet diameter L0 =1.42 tube length upstream of the constriction diameter 

/2=0.71 cm., length of the down stream domain L =65.5 cm. For the flow 

simulation and oxygen transport following parameters are applied: [Rappitsch 

and perktold (1996)], The simulation parameters are[Osenberg (1991)], mean 

flow rate =17.5 mls , mean inlet velocity, =10.52cms . Kinemetic 

viscosity=0.333 poise. 

0L d

1−
0U 1−

The resulting Reynolds number = 450, =2.58eR 0C ×10 mlcm , D =1.63− 3− ×10  

and reference wall flux  

5−

12 −scm



  mlgmmsmlcmg -5
0

126
0 103.0 ,86  ,1082.4 ×=Η=Ρ×= −−− λ

( λ/mm 00
13 Cgcm =ΡΗ −− ). The Peclet number Pe =930000 indicate highly 

convection problem. The qualitative characteristic of the is concentration 

contours in the separated flow region shows sharp concentration gradient near 

the wall and the separating stream line are very similar to shape of the contours 

published by Ma et al. (1994) for mass transfer in sudden expansion tube 

model. 

Figure 3(a) is drawn for the normalized mean cross sectional concentration. The 

comparison of the results with shear dependent wall permeability and constant 

wall permeability shown only slight difference. Figure 3 (b) depicts the main 

differences between the two permeability models occurring in the wall 

concentration. Figure 3(c) explains the non –dimensional diffusive wall flux. 

This study may have an important impact on the understanding of development 

of atherosclerotic diseases. The comparison of the result in the modal with 

constant wall permeability and in a model with shear dependent wall 

permeability demonstrates great differences in wall permeability. The results 

show that taking into account shear dependent permeability characteristics, 

depending on the special solute or gas, may have significant influence on the 

concentration distribution near and at the wall and consequently on the wall 

flux. The velocity profiles are shown in figure 4. Comparison between 

experimental and numerical simulation are made for the pressure distribution 

along the solid surface and the axial velocity profile. 

 5. Conclusion 



Steady convective diffusion has studied on an axi-symmetric stenotic artery 

model in the presence of porous effect. The numerical solution of the flow 

equations is obtaining applying the finite differences scheme. The numerical 

result indicate strong dependence of oxygen transport to the wall in the 

geometric flow region by influencing the concentration boundary layer, which, 

depends on the local fluid mechanical shear. In the model with shear stress 

dependent permeability wall shear stress not only affects the concentration 

boundary layer, but also vascular permeability. In the shear dependent 

permeability model a second flux minimum occurred at the down stream end of 

the recirculation zone where wall shear stress and therefore wall permeability is 

slow. Numerical simulation of analytical stenosis offers a non-invasive means of 

obtaining detailed flow patterns associated with the disease. The effect of the 

porous medium is an elegant device for flow control. It is found that models for 

convective mass transport through porous media are widely applicable in the 

production of the osteoinductive material, simulation of blood flow of tumors 

and muscles and in modeling blood flow when fatty plagues of cholesterol and 

artery clogging clots and formal in the lumen.    
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Figure 3 (c): Normalized Wall Concentration non-dimensional Diffusive 
flux. 
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Figure 4 (a) Variation of axial velocity profile with porosity (K=0.1). 
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Figure 4 (b): Variation of axial velocity profile with porosity (K=0.2). 
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